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Using Mobile LiDAR Data for Rapidly
Updating Road Markings
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Abstract—Updating road markings is one of the routine tasks
of transportation agencies. Compared with traditional road in-
ventory mapping techniques, vehicle-borne mobile light detec-
tion and ranging (LiDAR) systems can undertake the job safely
and efficiently. However, current hurdles include software and
computing challenges when handling huge volumes of highly
dense and irregularly distributed 3-D mobile LiDAR point clouds.
This paper presents the development and implementation as-
pects of an automated object extraction strategy for rapid and
accurate road marking inventory. The proposed road marking
extraction method is based on 2-D georeferenced feature (GRF)
images, which are interpolated from 3-D road surface points
through a modified inverse distance weighted (IDW) interpola-
tion. Weighted neighboring difference histogram (WNDH)-based
dynamic thresholding and multiscale tensor voting (MSTV) are
proposed to segment and extract road markings from the noisy
corrupted GRF images. The results obtained using 3-D point
clouds acquired by a RIEGL VMX-450 mobile LiDAR system in a
subtropical urban environment are encouraging.

Index Terms—Mobile light detection and ranging (LiDAR),
point cloud, road marking, tensor voting, thresholding.

I. INTRODUCTION

MAPPING road markings is greatly important for manag-
ing and controlling traffic activities, detecting potential

road safety hazards, and improving transportation standards.
According to the Manual on Uniform Traffic Control Devices
(MUTCD) [1], urban roads are designed with curbstones to
separate roads from sidewalks or medians. Road markings are
highly reflective painted objects on the road surface. They
function to guide traffic routes, control driving behaviors, and
maintain traffic safeties. Rapid and accurate inventory mapping
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of road markings is essential to the applications of intelligent
transportation systems (ITS), such as (1) Lane Departure Warn-
ing (LDW) systems, (2) anti-sleep systems, (3) driver assistance
and safety warning systems [2], and (4) autonomous driv-
ing [3].

In the early stages, inventory mapping of urban road surfaces
was manually accomplished by field specialists at transporta-
tion agencies. This task was labor intensive, time consuming,
and costly. Remotely sensed data, such as high-resolution aerial
images and recent unmanned aerial vehicle (UAV) data, have
been explored for detecting roads/highways, road boundaries,
and other road features and objects [4]–[6]. Frew et al. [6]
detected lane markings from UAV images for real-time road
detection using Bayesian classifier. These aerial images are still
inadequate for road/highway marking inventory unless the UAV
flies low enough so that road markings are clearly visible.

In recent years, mobile mapping systems using CCD cameras
[7] or video cameras [8] have been developed for roadway inven-
tory mapping. Shape, size, and color features of road markings
have been used as essential cues for road marking extraction
[9]–[12]. By integrating position, orientation, and intensity
features, a Three-Feature based Automatic Lane Detection
Algorithm (TFALDA) was proposed in [13] for detecting lane
markings. This algorithm required no prior knowledge and
could operate efficiently in cluttered road environments. Subse-
quently, multi-level feature-based approach [14] and Delaunay
triangulation [15] were developed for reliably extracting lane
markings. Instead of using RGB color representation, an HSI
color model was proposed in [16] for lane marking detection. A
method for detecting 3D zebra-crossing and dashed-line strips
from stereo-pairs was presented in [17]. Image-based road mark-
ing detection methods are heavily affected by illumination
changes and shadows. To obtain reliable measurements, steer-
able filters [18] were developed to detect road markings under
varying road conditions. Real-time detection and recognition of
road markings is an important issue and is urgently demanded
by many activities and systems, such as Driving Assistance Sys-
tems designed to improve traffic safety. Vision-based [7], [19],
curve-based [20], and feature-driven approaches [21] have been
developed for real-time detection of road markings. However,
these techniques highly depend on illumination conditions of the
surveyed scenes and are heavily affected by noise such as pave-
ment cracks and shadows cast by passing vehicles, roadside
buildings, and trees. Therefore, image- and video-based inven-
tory mapping techniques still face great challenges and require
great improvements in order to meet the increasing demands for
inspection and inventory of highways and public roads.
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Mobile light detection and ranging (LiDAR) systems have
exhibited outstanding advantages over the traditional mapping
techniques. Such a system is normally composed of laser scan-
ner(s), digital camera(s), Global Positioning System (GPS),
Inertial Measurement Unit (IMU), and Distance Measurement
Indicator (DMI) [22]. The system can be mounted on a moving
vehicle, such as a car or a train, to collect 3D geospatial
data of roadways over a large area at a normal driving speed.
Advantages of using mobile LiDAR for a transportation engi-
neering survey can be summarized as (1) Safety—point clouds
are collected by a vehicle moving at highway speeds, keeping
surveyors off the traveled lanes. (2) Less disruptiveness—the
mobile system requires no traffic controls or lane closures.
(3) High accuracy—millimeter-level accuracies are possible
on hard surfaces. (4) Dense data sets - extremely dense to-
pographic data sets, consisting of approximately 1,000 mea-
surements per square meter, and detail transportation features
within the system’s field of view. The data set can produce
cross sections at any interval. (5) Rapid field data collection
- mobile LiDAR survey data collection is significantly faster
than conventional surveying methods. (6) Auxiliary imagery
- digital geo-referenced imagery is collected simultaneously
with the LiDAR data. Moreover, mobile LiDAR systems can
complete multiple inventory mapping tasks in a single mis-
sion in a short time period. By using near-infrared spectrum,
such systems are able to work day and night without con-
sidering the environmental illumination. Compared to its air-
borne counterparts, mobile LiDAR systems can acquire highly
denser 3D point clouds, provide more direct views of road
surfaces [17], and cost less for roadway inventory mapping.
Therefore, mobile LiDAR systems have become a promising
and cost-effective means for inventory mapping of urban road
surfaces.

However, to ensure reliable results when conducting a mobile
laser scanning survey, close attention must be paid to project
control and targeting, data collection planning, data processing,
quality assurance and quality control (QA/QC). To extract
road markings from mobile LiDAR data, the first step is to
identify the points belonging to road surfaces. On road surfaces,
road markings are highly retro-reflective surfaces painted on
roads; as a result, the reflectance of the targets in the form of
intensity can be used to identify road markings [23]. Based on
intensity differences between road surfaces and road markings,
road markings were extracted and used in [24] as the ground
control for quality assessment (QA) or quality control (QC)
of the image data. In [25], a simple threshold was applied
to intensity data for extracting road markings. Solid-edge-line
and broken-lane-line markings were outlined in [26] by first
applying an interpolation method to mobile LiDAR points,
and then segmenting the image using intensity and elevation-
difference information. Finally, road markings were estimated
by integrating their semantic knowledge (e.g., shape and size).
However, as most of these algorithms have applied a global
threshold-based segmentation algorithm to the intensity data of
mobile LiDAR point clouds, much noise is introduced, making
these methods less effective in road-marking extraction. The
intensity data highly depend on the ranges from the scanner to
objects, the incidence angles of laser pulses, and the material

properties of road surfaces. Thus, the intensity data need to be
normalized prior to segmentation [27], [28].

In this paper, we develop a novel strategy for automated
extraction of road markings from mobile LiDAR point clouds.
The developed road marking extraction method is based on
2D georeferenced feature (GRF) images, which are interpo-
lated from 3D road surface points in data pre-processing. A
dynamic thresholding using Weighted Neighboring Difference
Histogram (WNDH) is used for segmenting road marking can-
didates from GRF images. Afterwards, road markings are ex-
tracted by applying the proposed 2D multi-scale tensor voting
(MSTV) framework and clustering analysis. In summary, the
contributions of this paper are as follows: (1) a WNDH method
for dynamically determining optimal thresholds to identify
potential road marking pixels from GRF images, and (2) a novel
MSTV framework for suppressing noise and extracting road
markings.

The remainder of this paper is organized as follows:
Section II details the workflow for extracting road markings.
Section III reports and discusses the results obtained using a set
of mobile LiDAR point clouds. Finally, concluding remarks are
given in Section IV.

II. STRATEGY

The strategy for automated extraction of road markings
includes two main steps: (1) data pre-processing including
road surface extraction and GRF image generation; (2) road-
marking extraction including dynamic thresholding, MSTV,
and clustering analysis.

A. Data Pre-Processing

The mobile LiDAR point clouds acquired by our system
contain both road surfaces and roadside features. Inventory
mapping of road surface only focuses on road surface point
clouds. In order to reduce the amount of the data being pro-
cessed and the time complexity of the proposed strategy, we
need to segment road surfaces from the entire point clouds
rapidly and accurately. In our previous method [27], [29], we
developed a curb-based approach for segmenting road surfaces.
This approach first partitions point clouds into a set of blocks
along the trajectory. For each of the blocks, a profile is gen-
erated perpendicularly to the trajectory. Next, each profile is
vertically divided into a grid structure and a set of principal
points are selected from this profile based on a layering and
gradient method. Then, curb corner points are determined by
calculating the slops and elevation-differences between two
successive principal points. Usually, street design and construc-
tion manuals in many countries state that curb height ranges
between 10 cm and 25 cm. The use of slope and elevation-
difference evaluation criterion can not only remain the curb
points but also remove road objects, such as cars, vans, bicycles,
and pedestrians. Finally, with the constraint of the trajectory, the
curb corner points determined from all profiles are fitted to form
curb-lines. With the knowledge that urban roads are designed
with curbstones as the boundaries of roads, road surface point
cloud can be easily segmented from the entire point cloud
based on the fitted curb-lines. This road surface segmentation
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Fig. 1. (a) Raw point cloud, (b) segmented road surface (red), and (c) GRF
image.

Fig. 2. Illustration of different cases for local intensity difference measure.

approach operates accurately and efficiently, therefore, in this
study, we use this curb-based approach to segment road surface
points. Fig. 1 shows an example of the segmented road surface.

Next, we interpolate these road surface points into a GRF
image via a modified Inverse Distance Weighted (IDW) in-
terpolation method. The modified IDW interpolation method
estimates the value of a given cell by combining intensity
and distance weights of all points. A detailed description and
discussion of the GRF image generation and relevant parameter
configurations is found in Guan et al. [27]. Fig. 1(c) shows an
example of the generated GRF image using the IDW interpola-
tion method.

B. Road Marking Extraction

1) WNDH-Based Dynamic Thresholding: As shown in
Fig. 2, road markings show higher intensities than their sur-
rounding road surface in the GRF image. However, the reflected
laser pulse intensity highly depends on the incident angles of
laser beams and the ranges between the measured target and
the laser scanner. Generally, the reflected laser pulse intensity
decreases with the increase of incident angles and ranges.
Consequently, the road markings farther away from the scanner
center exhibit relatively lower intensities than those of the road
markings near to the scanner center. Therefore, the intensities of
road markings distribute unevenly and show different contrasts
in the GRF image.

To efficiently and completely ascertain road marking candi-
dates, we adopt a dynamic thresholding strategy. We divide the
GRF image into a set of sub-images with a size of Ws ×Ws

pixels. In each sub-image, we modify the Neighboring Dif-
ference Histogram (NDH) method [30] and develop a WNDH
method to (1) analyze the intensity differences in a local neigh-

borhood of each pixel, and (2) automatically determine optimal
local thresholds for ascertaining road marking candidates from
each of the sub-images.

Denote I = {Sm|m = 1, 2, ..n} as the GRF image, where
Sm indicates the mth sub-image and n is the number of sub-
images. Denote N(i, j) as the connected neighborhood with
size 2k + 1(k > 0) centered at pixel (i, j), and dm(i, j) as
the local intensity difference measure at pixel (i, j) within
sub-image Sm(m = 1, 2, ..n). The local intensity difference
measure is defined as follows:

dm(i, j) =

∑
(u,v)∈N(i,j)

∣∣Imuv − Imij
∣∣ · (Imuv − Imij

)
∑

(u,v)∈N(i,j)

∣∣Imuv − Imij
∣∣ , (1)

where Imij denotes the intensity value at pixel (i, j) within sub-
image Sm. The intensities along road markings are usually
higher than those of the background road surface, therefore,
ideally the following cases are satisfied:

(1) dm(i, j) takes a value close to zero when pixel (i, j) is
located in the center area of road marking, as shown by
pixel A in Fig. 2;

(2) dm(i, j) takes a negative value when pixel (i, j) is located
at the internal boundary of road marking, as shown by
pixel B in Fig. 2;

(3) dm(i, j) takes a positive value when pixel (i, j) is located
at the external boundary of road marking, as shown by
pixel C in Fig. 2;

(4) dm(i, j) takes a value close to zero when pixel (i, j) is
located in the center area of the background road surface,
as shown by pixel D in Fig. 2.

According to the above cases, the pixels with intensity differ-
ences in case (2) are the potential road marking candidates. To
evaluate the overall intensity difference measures within each
sub-image, the intensity difference measure of each pixel is
aggregated to its corresponding gray level as follows:

Hm(l) =
∑
Im
ij =l

dm(i, j), l ∈ [0, 255], (2)

where Hm(l) denotes the overall intensity difference measure
of the pixels with gray level l in sub-imageSm. Then, according
to the aforementioned case (2), the optimal threshold Tm for
identifying road marking candidates from sub-image Sm is
determined by selecting the gray level corresponding to the
minimum of the overall intensity difference measure in (2), i.e.,

Tm = argmin
l

Hm(l). (3)

The pixels with intensities higher than Tm are regarded as
road marking candidates.

2) MSTV-Based Road Marking Detection: Generally, the
identified road marking candidates contain considerable noise.
The noise is caused by the characteristics of the reflectance
backscattered by the measured targets and the materials of the
targets’ surface. To efficiently filter out the noise, we develop
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an MSTV framework which has the capability of suppressing
noise and preserving road markings.

Tensor voting (TV) was first introduced in computer vision
for perceptual grouping purposes [31]. A TV framework has
an advanced capability to efficiently suppress high-level noise
and infer perceptual structures from noisy or corrupted data.
Developed on the foundation of Gestalt psychology, the TV
method is based on tensor representations of image features
and nonlinear voting. In the 2D case of TV, perceptual grouping
is undertaken through casting votes between image primitives,
such as unoriented points [32], curve elements [33], and region
elements [34]. The input image primitives are first encoded as
structure-aware tensors, where the structures are either regions,
curves, junctions, or endpoints in the feature space [33]. Gener-
ally, a second-order, symmetric, non-negative definite tensor is
represented by a 2 × 2 matrix, decomposed as

T = (λ1 − λ2)e1e
T
1 + λ2

(
e1e

T
1 + e2e

T
2

)
(4)

where λ1 and λ2(λ1 ≥ λ2) are the eigenvalues, e1and e2 are the
corresponding eigenvectors. A tensor is geometrically visual-
ized as an ellipse shaped by the tensor’s eigenvectors’ directions
and eigenvalues’ magnitudes. The tensor’s shape defines the
structural type of interest, and its size represents the saliency.
The first term in (4) is termed as stick tensor, indicating an
elementary curve element with e1 as its curve normal. The
second term is called ball tensor, indicating a region structure
without any preferred orientations [31]. For example, a road
marking pixel in the GRF image is within a region, indicating
that the pixel has no preferred orientation with the values of λ2

in a saliency map.
Each tensor is then propagated within the voting field in the

form of vote [31]. The more votes received by a given tensor,
the higher the probability of a salient feature being present at
the corresponding location. Each input collects all the votes
cast by the tensors in its neighborhood and integrates them
into a new tensor, eventually revealing behavioral coherence
among the image primitives. Through tensor decomposition
and eigenvalue analysis, different perceptual structures can be
efficiently estimated even with the presence of high-level noise.

To efficiently extract road marking pixels from the thresh-
olded image, we develop an MSTV framework that utilizes ball
tensors to infer region elements. In a standard ball voting, image
primitives are encoded with ball tensors with unit saliencies.
The voting field for ball tensors is controlled by the voting scale,
σ, which determines the neighborhood where a ball tensor
can cast votes [31]. A large σ, which corresponds to a large
voting neighborhood, enforces a higher degree of smoothness,
thus assisting in noise removal. On the other hand, a small σ,
which corresponds to a small voting neighborhood, has higher
susceptibility to outlier corruption, but better preservation of
details. Within the voting field, the vote cast by a ball tensor is
achieved by summing the votes cast by stick tensors that span
360 degrees at regular intervals [35]. The vote cast by a stick
tensor is defined by a decay function [31]

DF (s, κ, σ) = exp

(
−s2 + cκ2

σ2

)
, (5)

Fig. 3. Flow chart of the proposed MSTV.

where s denotes the arc length between the voter and the
receiver, κ is the curvature, and c controls the degree of decay
with the following form [30]

c =
−16(σ − 1) log2 0.1

π2
. (6)

Fig. 3 shows the flow chart of the MSTV algorithm. Assume
that P = {p1, p2, p3 . . . , pi, . . . pn} is the road marking can-
didate data set, where n is the number of road marking can-
didates; pi is the ith road marking candidate. In the MSTV
framework, a road marking candidate,pi, is initially encoded,
in the form of a 2 × 2 identity matrix, by a ball tensor with unit
saliency, since no prior distribution information is available.
After construction of the tensor space, a round of sparse ball
voting with σ is performed. A large σ is selected to efficiently
suppress noise. An Otsu’s thresholding method [36] is applied
to the saliency map for removing pixels with low saliencies.
After large-scale sparse ball voting, all tensors corresponding
to road marking candidates obtain rough orientations and mag-
nitudes. However, mapped road markings still contain noise and
lack of saliencies. Thus, an iterative dense ball voting procedure
is required to refine the results and obtain a saliency map of road
markings. The first round of dense ball voting with σ is exe-
cuted, followed by saliency thresholding. During the following
iterations, σ is iteratively decreased by an interval Δσ to
focus more on preserving local details. The iterative ball voting
procedure stops until the voting scale meets a stop criterion,
σe, which allows the smallest voting field where tensors can
cast votes. Therefore, with the MSTV, a refined road marking
probability map is generated to enhance the road marking
pixels; simultaneously, suppressing the background and the
noise.

3) Road Marking Extraction: Through the MSTV frame-
work, road markings are almost detected. However, some small
fragments are falsely detected as road markings. To further re-
move those small noisy fragments, a region-growing approach
is used to segment potential road marking pixels into separated
regions. We define the criterion of the maximum distance of dc
pixels for growing two adjacent pixels. Afterwards, a bounding
rectangle is calculated for each region. Then, the region whose
diagonals of the bounding rectangles are smaller than a pre-
defined threshold dmin are regarded as non-road markings and
filtered out.

III. RESULTS AND DISCUSSION

A. Mobile LiDAR Datasets

The data were acquired on 23 April 2012 by a RIEGL
VMX-450 system. The surveyed area is in a tropical urban
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Fig. 4. Point clouds: (a) SRS dataset, (b) ICEC dataset, and (c) YB dataset.

environment, located in the City of Xiamen, southeast China.
A complete survey was carried out, once in a forward direction
and once in a reverse direction, on Huandao Road from Xiamen
University to International Conference and Exhibition Center
(ICEC), at a driving speed of approximately 50 km/h. This two-
directional-four-lane Huandao road is separated by a median.
This is a typical subtropical urban road area with high buildings,
dense vegetation, and traffic signposts on both sides of the
road. From the scanned point cloud data, three datasets were
selected covering the locations of Siming Road South (SRS)
[Fig. 4(a)], International Conference and Exhibition Centre
(ICEC) [Fig. 4(b)], and Yanwu Bridge (YB) [Fig. 4(c)], re-
spectively (see Table I). Using the vehicle trajectory, the road
section was first segmented into road and non-road points in
the pre-processing stage. Then, given that the point density on
the road surface was as high as 4,000–7,000 points/m2, 2.5-cm
GSD (ground sample distance) was used for generating GRF
images from the segmented road points. The GRF image sizes
for the three datasets can be found in Table I.

B. Dynamic Thresholding Tests

To evaluate the feasibility of the proposed WNDH-based dy-
namic thresholding, we compared it with a global thresholding
method. Eight small GRF images with different types of road

TABLE I
DESCRIPTION OF THE THREE MOBILE LIDAR DATASETS

markings were selected in identifying road marking candidates,
as shown by the first row in Fig. 5.

For our thresholding method, the window size Ws was set to
be 20 pixels. First, the GRF images were virtually partitioned
into a set of sub-images with the defined window width. Then,
these sub-images were thresholded separately using the pro-
posed WNDH method. The identified road marking candidates
are shown in the second row in Fig. 5. For the global thresh-
olding, a globally optimal threshold that maximizes the ratio of
between-class variance to within-class variance was determined
for each selected small GRF image. The identified road marking
candidates are shown in the third row in Fig. 5.

The identified road marking results using the global thresh-
olding method show that some of the road markings are missing
or incomplete on one side of the GRF image, while a great
portion of noise exhibits on one side of the GRF image. On
the contrary, our method, which dynamically selects locally
optimal thresholds, detects complete and correct road marking
candidates with little noise. Visual inspection indicates that
the proposed dynamic thresholding identifies road marking
candidates more accurately with less noise than the global
thresholding method.

To explore the impact of window size on road marking
extraction, we search a range of Ws (5, 10, 20, 30, 40, 50,
60, 70, 80 pixels) for the eight GRF images. By comparing the
extracted road markings with the manually interpreted ground-
truth, we quantitatively evaluated the results of the extracted
road markings using the following three measures: complete-
ness, correctness, and F -measure [22].

Fig. 6 shows the measures of road marking extraction results
on the eight images with nine different window sizes. The
results of all eight samples demonstrate that the completeness
index increases when the window size increases from 5 to
30, while the completeness decreases slightly when the win-
dow size is over 40. The correctness index, on the contrary,
decreases with the increase of the window size. Accordingly,
F -measure remains relatively stable. Over the window size
of 50, the correctness tends to increase, while F -measure
decreases. In our study, with an image resolution of 2.5 cm,
the best window size was obtained at Ws = 40 − 50.

C. Synthetic Data Tests on MSTV

To test the capability of the proposed MSTV framework in
suppressing noise and preserving perceptual structures, a set
of synthetic images, which contain different levels of signal
to noise ratios (SNR), were used for road marking extraction.
Generally, the smaller the SNR, the higher the noise level.
A range of SNR (e.g. 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0) was
applied to the original synthetic image without noise. In the
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Fig. 5. Identified road marking candidates with different thresholding methods.

Fig. 6. Eight GRF images with different window sizes, ranging from 5 to
80 pixels, (a) completeness, (b) correctness, and (c) F-measure.

MSTV, the following parameters are used: σ, Δσ, and σe.
Among these three parameters, the scale of voting, σ, controls
the neighborhood sizes for both the sparse ball voting and the
first dense ball voting in the iterations. σe and Δσ are used to
control the number of iterations.

Fig. 7. Illustration of testing MSTV: (a) synthetic images without noise,
(b) SNR = 10.0, (c) SNR = 5.0, (d) SNR = 2.0, (e) SNR = 1.0, (f) SNR =
0.5, (g) SNR = 0.2, and (h) SNR = 0.1.

In Fig. 7, the left images indicate the synthetic images
corrupted with noises with different variances. The processing
parameters are σ = 14, Δσ = 4.5, and σe = 5. The right im-
ages present the extracted road markings by using the proposed
MSTV framework. As shown in Fig. 7, when the SNR is
relatively high (SNR ≥ 0.5), noise is well suppressed, thereby
resulting in good extraction results. The capability of our
method decreases with the decrease of the SNR (SNR = 0.2
and SNR = 0.1). However, the extraction results are still ac-
ceptable with the existence of such high-level noise. Therefore,
the proposed MSTV framework is robust to suppress noise, and
obtains acceptable extraction results even with low SNRs.

D. Overall Performance

To examine the performance of the proposed method, the
selected datasets (SRS, ICEC, and YB datasets in Section III-A
were used to extract road markings. The GRF images for
the three datasets are shown in Figs. 8(a), 9(a), and 10(a),
respectively. The parameters and their configurations used in
road marking extraction are listed in Table II.

With the optimal window size of 50 pixels aforementioned
in Section III-B, the proposed WNDH-based dynamic thresh-
olding method was used to identify road marking candidates
from GRF images, as shown in Figs. 8(b), 9(b), and 10(b),
respectively. By using dynamic thresholding, road marking
candidates were identified with little incompleteness and noise.

Afterwards, the identified road marking candidates were
processed through the MSTV algorithm to iteratively suppress
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Fig. 8. (a) A GRF image, (b) identified road marking candidates, (c) saliency
map, and (d) extracted road markings.

Fig. 9. (a) A GRF image, (b) identified road marking candidates, (c) saliency
map, and (d) extracted road markings.

noise. A saliency map was generated for each dataset using
the saliencies of ball tensors, as shown in Figs. 8(c), 9(c), and
10(c), respectively. In the saliency maps, the darker the pixel,
the higher the probability of that pixel being located within
the region of road markings, while the brighter the pixel, the
higher the probability of that pixel being noise. As seen from

Fig. 10. (a) A GRF image, (b) identified road marking candidates, (c) saliency
map, and (d) extracted road markings.

TABLE II
PARAMETER CONFIGURATIONS IN ROAD MARKING EXTRACTION

Fig. 11. Illustration of commission error in YB dataset: (a) Scene image,
(b) a GRF image, and (c) extracted road markings.

TABLE III
QUANTITATIVE EVALUATION RESULTS FOR ROAD MARKING DATASETS

the saliency maps, noise is well suppressed and road markings
are well preserved and enhanced. Finally, road markings were
accurately extracted after removing small fragments that are
unlikely to be road markings. The extracted road markings are
shown in Figs. 8(d), 9(d), and 10(d), respectively. As seen from
the extraction results, road markings are accurately extracted
with little loss and incompleteness.

Observed from the extracted results, different types of road
markings are correctly extracted. However, as shown by the
red rectangle in Fig. 10(d), some of the pixels were falsely
detected as road markings. Since the special material of the
bridge joint [Fig. 11(a)], the pixels belonging to this region
show high intensities in the GRF image [Fig. 11(b)]. Thus, these
pixels are falsely detected as road markings [Fig. 11(c)].

Next, to quantitatively evaluate the performance of the pro-
posed road marking extraction method, three measures were
used: completeness, correctness, and F -measure. The quanti-
tative evaluation results are detailed in Table III. For the three
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Fig. 12. Extracted pavement markings using different methods.

datasets, the proposed strategy achieves an average complete-
ness of 0.93, an average correctness of 0.88, and an average
F-measure of 0.90. The proposed strategy shows high perfor-
mance on SRS and ICEC datasets, while a relatively lower
performance occurs on YB dataset caused by the commission
errors on the bridge joints. On the whole, our method performs
very well and extracts road markings accurately and completely.

E. Comparative Study

A comparative study was carried out to compare our pave-
ment marking extraction strategy with two recently published
methods, i.e., Yang’s method [26] and Guan’s method [27]. The
pavement marking datasets selected for this comparative study
are shown in the first row in Fig. 12. The pavement marking
extraction results using Yang’s method, Guan’s method, and
our proposed strategy are shown in the second, third, and fourth
rows, respectively. Comparing the extraction results using dif-
ferent methods with the manually labeled reference data (see
the last row in Fig. 12), we conclude that Yang’s method can
only extract isolated small-size rectangular-shaped pavement
markings, while Guan’s method and our proposed strategy
can extract different types of pavement markings. Furthermore,
compared to Guan’s method, our proposed strategy can extract
pavement markings more completely and accurately with less
commission and omission errors. Affected by using MSTV, our
proposed strategy takes longer computing time than Guan’s
method in extracting pavement markings. However, benefited
from the characteristics of TV, the voting process of each tensor
can be carried out separately and independently. Therefore,
multi-thread and parallel computing techniques can be used
to further reduce the time complexity and improve the perfor-
mance of our strategy for road marking extraction.

F. Time Complexity Analysis

The proposed strategy for inventory mapping of urban road
surfaces was implemented using C ++ running on an Intel
(R) Core (TM) i5-3470 computer with 16.0 GB memory. The
computing time in each step was recorded to analyze the time
complexity of the proposed strategy. Table IV lists the comput-
ing time in each step as well as the total computing time for
road marking extraction. As seen from Table IV, MSTV takes
the majority of the total computing time. Therefore, the time

TABLE IV
COMPUTING TIME IN SECONDS FOR ROAD MARKING DATASETS

complexity of the proposed strategy is basically determined
by the MSTV. However, for the road marking datasets, the
computing time is acceptable for accurately and completely
extracting road markings from such big, noisy, and intensity-
imbalanced GRF images. Since each road marking candidate
operates separately and independently in the MSTV, multi-
thread or parallel computing techniques were used to further
reduce the time complexity of the proposed MSTV. We have
explored the parallel method for process virtualization of large-
scale laser scanning data in a cloud computing environment
[33]. Six nodes were used in this study. Accordingly, we built
six threads to demonstrate the effectiveness of the multi-thread
strategy for easy comparison. As shown in Table IV, compared
to the sequential processing strategy, the multi-thread and the
parallel processing strategies dramatically reduce the computa-
tion complexity by 84% and 65%, respectively.

IV. CONCLUDING REMARKS

In this paper, we have proposed a novel strategy for rapid
update of road markings from mobile LiDAR point clouds. Our
strategy has been applied to three mobile LiDAR datasets for
extracting road markings. Through visual inspection and quan-
titative evaluation, our strategy achieved an average complete-
ness of 0.93, an average correctness of 0.88, and an average
F-measure of 0.90. Moreover, a comparative study has been
conducted to compare the performance and accuracy of our
strategy with those existing methods. The comparative results
demonstrate that our strategy extracts road markings more
accurately and completely with less commission and omission
errors. However, by using MSTV, our strategy takes longer
computing time to extract road markings. By the nature of TV,
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the voting process of each tensor can be carried out separately
and independently. Time complexity analysis shows that the use
of multi-thread and parallel computing techniques in the MSTV
can dramatically reduce the processing time, thereby improving
computation efficiency for inventory mapping of urban road
surfaces.
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